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Abstract 

Securing IoT (Internet of Things) systems in general, regardless of the communication 

technology used, has been the concern of many researchers and private companies. As for 

ZigBee security concerns, much research and many experiments have been conducted to better 

predict the nature of potential security threats. In this research we are addressing several ZigBee 

vulnerabilities by performing first hand experiments and attack simulations on ZigBee protocol. 

This will allow us to better understand the security issues surveyed and find ways to mitigate 

them. Based on the attack simulations performed and the survey conducted, we have developed a 

ZigBee IoT framework that could be used to solve security issues in the ZigBee protocol and in 

IoT in general. The system developed will: (1) predict a potential malicious attack by detecting 

the absence of a ZigBee node in the network and responding accordingly through a notification 

to the user of the system, (2) add another layer of encryption to the data transmitted between the 

ZigBee devices, (3) provide best practices for configuring and securing ZigBee devices and 

network, and (4) educate consumers about privacy and data security by involving them in the 

installation and giving them the autonomy to track in real time any motion activities detected 

around their house and inputting the time period that they would be notified should any 

suspicious activity occur. 
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Chapter1: Introduction 

1.1  Overview 

 IoT stands for Internet of Things which constitutes of physical devices such as 

refrigerators, cars, buildings, health monitoring systems and many others that are embedded with 

sensors, actuators, radio frequency identification (RFID), and software and are connected to a 

network such as the Internet that enables them to exchange and collect data. Internet of Things 

has stepped out from its infancy and is on the path of transforming our current understanding of a 

static Internet to a fully integrated dynamic Future Internet [1]. Experts forecasts that 6.4 billion 

connected devices will be in use in the world in 2016, that is 30% increase from 2015, and will 

reach approximately 20 billion by 2020 [2].  

 Bluetooth, ZigBee, Z-Wave, 6LowPan, WiFi, GSM/3G/4G, LoRa, Neul, and Sigfox are 

all communication technologies that are used in IoT. Currently, ZigBee is the most used 

technology in home automation and smart lighting. ZigBee is expected to capture 34% volume 

share of the home automation and 29% of the smart lighting markets by 2021 [3] with 

Compound Annual Growth Rate (GACR) of 26% during the period 2016-2020 [4].  

 Seeing the fast growth of IoT usage, and ZigBee communication specifically has sparked 

our attention to investigate the securities concerns that the IoT industry faces.   
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1.2  Motivation 

 Securing IoT systems in general regardless of the communication technology used, has 

been the concern of many researchers and private companies.  Symantec for example, has 

reported in its “Internet Security Threat Report” of 2015 that: “52 percent% of health apps - 

many of which connect to wearable devices - did not have so much as a privacy policy in place, 

and 20% sent personal information, logins, and passwords over the wire in clear text” [5].  In 

May of 2014, more than 90 people from 19 different countries in connection with “creepware” 

have been arrested by the FBI and the police - using Internet-connected webcams to spy on 

people [6]. Many researchers have also found that many cars, hospitals, oil grids and energy 

grids that are connected to an IoT are vulnerable to cyberattacks [7].  

 As for ZigBee security concerns, much research and many experiments have been 

conducted to better understand the security threats that it is susceptible to [8] [9] [10] [11] [12]. 

In Black Hat conference 2015 researchers demonstrated and exploited ZigBee vulnerabilities [8], 

also some frameworks and devices has been developed to sniff ZigBee packets and have 

succeeded in deploying multiple attacks [13]. Despite the fact that ZigBee protocol could be 

hacked in many different ways, researchers have agreed that solving the problem of security in 

IoT does not only depends on securing the IoT devices and their communication technology, but 

on securing the IoT system as whole and developing a full solution IoT framework that involve 

multiple layers of security [14] [15] [16].  

 Based on all the above information/researches in securing IoT systems, and the 

domination of ZigBee protocol in the home automation market, we have found that additional 
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security measures could be added to better secure ZigBee communication and IoT home 

automation in general. Therefore, we have focused this thesis on: 

1- Surveying the ZigBee vulnerability 

2-  Performing first hand experiments and security attack simulations on ZigBee to develop 

a better understanding of how to detect and defeat them. 

3- Designing and Developing an IoT home automation framework based on ZigBee 

protocol that solves many security concerns. 

In brief, our IoT home automation system consists of motion sensors that detects the presence of 

objects around the house, notifies the user of such activity by email/message, and allows the user 

to monitor these activities in real time through a web application. As you notice our system is not 

unique in its functionality and there are many such systems on the market today; however, the 

focus of our IoT system is not only to provide home automation to consumers, but more 

importantly to provide a full IoT framework to secure such automation. Our IoT ZigBee based 

framework is focused on:  

1- Setting up multiple layers of defense, where multiple layers of security could be used to 

defend a particular risk by using additional encryption to the data transmitted between the 

ZigBee devices. 

2- Educating consumers about privacy and data security [17], by giving them the autonomy 

to track in real time any motion activities detected around their house, and setup the time 

period that they should be notified of any suspicious activities that occurs. 

3- Not using default IoT devices configurations [18] by configuring and securing ZigBee 

devices communication. 
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4- Predicting potential malicious attack, by detecting the absence of a ZigBee node in the 

network and responding accordingly through a notification to the user and to the systems’ 

management team. 

 

 Contribution: 

 Our thesis is organized as follow: 

o In chapter 2, we give a background on ZigBee protocol and its security measures. 

o  In chapter 3, we survey ZigBee vulnerabilities and mitigation methods suggested by 

researchers.  

o In chapter 4, we perform attack simulations on ZigBee protocol to learn and explore 

its vulnerabilities first hand.  

o In chapter 5, we review our design and implementation of a secure IoT framework 

based on ZigBee protocol, to solve some of the problems discovered in the ZigBee 

protocol, and in any IoT system in general. 

o In chapter 6, we summarize the work accomplished in this thesis and provide a 

roadmap of future work that provides more security measures.  
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Chapter 2: Background on ZigBee protocol and security measures 

2.1  ZigBee Overview  

 ZigBee is based on the IEEE 802.15.4 standard specification and is created by a set of 

companies which form the ZigBee Alliance to provide an open-source wireless networking 

standard aimed at monitoring, and controlling services applications where responsiveness is 

more important for real-time operations than high bandwidth. Most ZigBee radio transceivers 

operate in the same 2.4GHz ISM (industrial, scientific & medical) band as Wi-Fi and Bluetooth 

[19]. This standard defines a communication layer level 3 and higher in the OSI model with the 

purpose of defining extra communication features such as authentication, encryption, and 

association in the upper layers application services as shown in Figure 1. To be more specific 

ZigBee implements two extra security layers on top of the IEEE 802.15.4 standard: 

The Network and Application security layers [20].  

 

Figure 1: ZigBee and 802.15.4 in OSI model 
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2.2  Devices Roles in a ZigBee Network 

 ZigBee protocol defines three types of logical devices and each type has a specific role: 

 Coordinators:  

 Are responsible for setting up the network parameters, e.g. selecting the network 

encryption key, and creating the network. Only one coordinator should exist in the network. The 

coordinators usually act as a trust center and they are responsible to set the trust center link key, 

and to manage and authenticate any new node that wants to join the network. Coordinators can 

act also as routers or end devices. The coordinators cannot be put to sleep and cannot be battery 

powered because the packets have to be saved to be sent to end devices and routers.   

 Routers:  

 Are usually the intermediates nodes and route the information sent by end devices to the 

coordinator; in some case routers could also act as an end device. The routers, like the 

coordinators cannot be put to sleep or powered by batteries. 

 End Devices:  

 Are usually the sensor nodes that collect environment data, e.g. thermostat, motion 

detectors, and infrared devices. End devices can either communicate with the coordinator or the 

routers, but not among each other. To save power, end devices can optionally be battery powered 

and put to sleep whenever activities are not detected for a certain period of time; similarly, end 

devices are awakened whenever an environment activity is detected.    
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2.3  ZigBee Topologies 

 ZigBee supports only a star, tree and a mesh network topology, but does not support 

cluster tree topology like 802.15.4. 

 Star topology: 

 In a star topology the coordinator is placed at the center of the network, where routers 

and end devices can connect to. In this topology there’s no differentiation between routers and 

end devices; routers are treated as end devices, and the coordinator is responsible of routing 

packages. Devices can only communicate with the coordinator and not among each other, and 

any packet exchange has to go through the coordinator as shown in Figure 2 [21]. 

 

Figure 2: ZigBee Star Topology [21] 

 Tree topology 

 In a tree topology the coordinator acts as the tree node, where routers and/or end devices 

can connect and communicate to, as shown in Figure 3. A router can be a parent node and can 

connect to another router, coordinator, and an end device. An end device can only be a children 

node of the parent coordinator (root node), or to a router; also end device cannot communicate 
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and connect to each other. Children of any specific node can communicate among each other, or 

to other nodes only through their parent node. The drawback of a tree topology is that in case of 

a mal functioning or disabled parent node, the children cannot communicate with other devices 

in the network.  

 

Figure 3: ZigBee Tree Topology 

 Mesh Topology 

 In a mesh topology any node can send data to any other node in the network as shown in 

Figure 4; if the destination node is not in range, the packet will be sent to a neighboring node 

which will forward it to the destination node; hence it’s called a self-healing topology. This 

topology requires one coordinator, one or multiple routers, and the end devices could be optional 

since the routers can act as end devices. Applying mesh topology in a large network causes a big 

overhead, and it is usually more complex to setup. 



www.manaraa.com

9 

 

 

Figure 4: ZigBee Mesh Topology 
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2.4  ZigBee Security  

 ZigBee security is applied to the Network and Application layers where packages are 

encrypted with 128-bit AES (Advanced Encryption Standard) as shown in Figure 5 [19]. Data is 

encrypted by using a network encryption key and possibly a link encryption key. Devices has to 

have the same keys to be able communicate among each other in the network.  

 

Figure 5: ZigBee Security Model [19] 

 

2.4.1 Network Layer Security 

 The network layer security is implemented by using a network key to secure broadcast 

communication by encrypting the APS layer and application data as shown in Figure 6. Once 

security is enabled in the network, all data packages are encrypted with the network encryption 

key [19]. Security at the network layer applies to all packages transmitted and is encrypted and 
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decrypted on in each node of the network (hop-by-hop); however, this security does not apply to 

the medium access layer communication, such as beacon messages [19]. 

 

 

Figure 6: ZigBee Network Authentication and Encryption [19] 

 

 Replay Protection: 

 Each node in the ZigBee network contains a 32-bit frame counter and it is located in the 

network header. The frame counter is incremented for every transmission to encounter replay 

attacks, and every node tracks the last 32-bit frame counter of each of the devices (nodes) that 

are connected to it. Once a device accepts a package from a neighboring node with a lesser frame 

counter value than it has previously received, the package will be thrown away [19]. The 

maximum value that a frame counter can reach is 0XFFFFFFFF, and if the maximum value is 

reached, no transmission can be made. Table 1 displays the time that it takes the frame counter to 

reach its maximum [19]. The only time the frame counter is reset to 0 is when the network key is 

updated. 
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 Message Authentication Code: 

 Similar to IEEE 802.15.4, ZigBee uses Message Authentication Code to authenticate the 

network header, application header and application data.  Hash code is implemented on these 

fields and is added to the end of the packet to form the 4-byte Message Integrity Code (MIC) that 

allows receiving nodes to identify that the message is not altered. When a device receives a 

packet and the MIC does not match its own hashed data, then it drops the packet. The MIC 

provides message integrity in the ZigBee protocol. 

 Encryption/Decryption:  

 The packets transferred in the network encryption layer are authenticated, then encrypted 

and decrypted at every node in the route. As soon as a device receives the packets and is not the 

Average Transmission Rate Time until frame counter reach Max 

1/second 136 years 

10/second 13.6 years 

 

Table 1: ZigBee frame counter reaching maximum value [19] 
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destination, it encrypts and authenticates the packets using its own frame counter and source 

address in the network header section [19]. Packets latency is lengthier in a security enabled 

network than in a none enabled one because the encryption and decryption mechanism is 

achieved at every node.  

2.4.2 Application(APS) Layer Security 

 Application layer security is implemented by using a shared link key to secure the unicast 

communication between the source and the destination devices to encrypt application data as 

shown in Figure 7 [19].  Application security is not required, and it provides end to end security 

using a link encryption key that the source and destination nodes only know about, unlike 

Network Layer that provides a node to node basis security.  

 

Figure 7: ZigBee APS Authentication and Encryption [19] 

 

 Message Authentication Code: 

 Like the network layer, the application header and the application data are hashed and are 

appended to the packet to form a 4-byte Message Integrity Code (MIC) 
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 Application link keys: 

 The application security uses two different types of keys. The first is the trust center link 

key, where the key is recognized between the trust center and the device [19]. The trust center 

generates the trust center link key and is accountable for permitting nodes to join the ZigBee 

network. The second link key is the application link key and it is established between two 

devices in the network and none of these devices is a trust center.  
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2.5  Creating and Joining ZigBee Network 

 Nodes that wants to join the ZigBee network, they broadcast a beacon request on a 

specific channel and all the routers and coordinators in the range will reply with a beacon 

response, that informs the new node with the Personal Area Network Identifier (PAN ID) of their 

operating network. If the joining node does not receive any beacon response back, then it repeats 

the beacon transmission on the succeeding channel until it finds a valid one. Once a valid 

network is found the new node transmits an association request (unicast message) informing the 

network his readiness to join. The router or coordinator in range transmits an association 

response with a 16-bit network address that has been assigned to the new joining node. 

Beacon messages are not encrypted and any node can receive a beacon from a router or 

coordinator device; however, for a node to join the ZigBee network, its security settings has to 

match the security setting that are set by its parent [19] [20].  

2.5.1 Creating and Joining an Unsecure ZigBee Network 

 ZigBee network is identified as a Personal Area Network (PAN), and is identified by 

distinctive PAN ID. ZigBee like 802.15.4 operates on the 2.4 GHz frequency band; it breaks the 

2.4 GHz band into 16 channels. Table 2 shows the channels that ZigBee can operates on and the 

overlapping between the channels and the 2.4GHZ band [20]. Choosing the right channel is 

crucial to avoid any conflict with any other protocols that uses the same channels e.g. Wi-Fi. 

 The coordinator is accountable of choosing the PAN ID and the channel to start a 

network; if they’re not selected, a random PAN ID and a random channel are automatically 

selected. The joining device should be operating on the same preconfigured channel as the 
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coordinator, also the joining device should be either preconfigured with the same PAN ID as the 

coordinator, or it can discover the PAN ID of nearby networks for it to join; the later approach is 

not recommended since any device can join any network, if security is not enabled. ZigBee 

supports both 64-bit and 16-bit PAN ID; the 64-bit and was created to resolve a potential range 

conflict since the 16-bit has a limited addressing space (65,535 possibilities). ZigBee stack is 

able to resolve a PAN ID conflict in case multiple networks choose the same PAN ID. 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

17 

 

Decimal Hex Frequency SC mask Wi-Fi Conflict Comments 

11 0x0B 2.405GHz 0x0001 Overlaps Ch 1 Newer XBee only 

12 0x0C 2.410GHz 0x0002 Overlaps Ch 1  

13 0x0D 2.415GHz 0x0004 Overlaps Ch 1  

14 0x0E 2.420GHz 0x0008 Overlaps Ch 1  

15 0x0F 2.425GHz 0x0010 Overlaps Ch 6  

16 0x10 2.430GHz 0x0020 Overlaps Ch 6  

17 0x11 2.435GHz 0x0040 Overlaps Ch 6  

18 0x12 2.440GHz 0x0080 Overlaps Ch 6  

19 0x13 2.445GHz 0x0100 Overlaps Ch 6  

20 0x14 2.450GHz 0x0200 Overlaps Ch 11  

21 0x15 2.455GHz 0x0400 Overlaps Ch 11  

22 0x16 2.460GHz 0x0800 Overlaps Ch 11  

23 0x17 2.465GHz 0x1000 Overlaps Ch 11  

24 0x18 2.470GHz 0x2000 Overlaps Ch 11 Newer XBee only 

25 0x19 2.475GHz 0x4000 No Conflict Newer XBee only 

26 0x1A 2.480GHz 0x8000 No Conflict Newer non-PRO XBee only 

 

Table 2: ZigBee Channels and 2.4GHz Band [20] 
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2.5.2 Creating and Joining a Secure ZigBee Network 

 A secure ZigBee network requires security configuration in addition to the configuration 

and rules applied in an unsecure ZigBee network. 

Table 3 summarizes all the cases that allow or disallow a node to join a secure or an unsecure 

network and to establish or disestablish the communication with other nodes.  

 Joining Node 

Encryption 

Enabled 

Parent Node 

Encryption 

Enabled 

Network Joined Communication Established 

Case 1 NO NO YES YES 

Case 2 NO YES YES NO 

Case 3 YES NO NO NO 

Case 4 YES YES DEPENDS DEPENDS 

 

Table 3: Cases of Nodes Joining a ZigBee Network [20] 

 

Table 3 shows that even if both parent node and the joining node has encryption enabled, the 

joining node might not be able to join the network or establish communication. This case is 

described as follows:  

 The joining node will join the network if pre-configured with the same encryption key as 

the parent node. The coordinator will not only be responsible for selecting the PAN ID, and the 

channel to operate on, but also selecting the network encryption key. In addition, the coordinator 
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that is usually the trust center has to pick the link encryption key (APS key).  Both the network 

key and the link encryption key could be pre-configured or chosen randomly.  

 In a secure ZigBee network, any device that wants to join the network has to get the 

network key. If a joining device is configured with the same link key provided by the coordinator 

or the trust center, then the network encryption key is sent to the joining node encrypted with the 

link encryption key [19] [20]. In any other case the trust center will decide whether or not to send 

the network key to the joining node; if the trust center decides to send the network key to the 

joining node then the key will be sent unencrypted as a “plain text” [19] [20].   
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 Chapter 3: ZigBee Vulnerabilities and Mitigation Methods 

3.1  Overview 

 Securing IoT has been the main goal and the main investment of many companies and 

researchers, and especially that the IoT sector have experienced many real attacks that have 

affected large companies in different sector. Recently, about a week ago, a denial of service 

attack took down the internet for most of the Eastern states. The attack was aimed at Dyn, an 

internet and DNS provider for many big companies such as Spotify, Reddit, and New York 

times. The main attack was due to a malware that affected IoT devices such as webcams, DVRs, 

and routers [22]. Once these IoT devices are infected   they become part of botnet army that 

drives a huge number of malicious traffic to a specific target. This type of attack is not new or a 

surprise to many researchers in the IoT field, but in the contrary it has been proven and predicted 

by many researchers that have tested a variety of IoT devices.  

 Considering the importance of the security in IoT devices, we discuss in this chapter the 

vulnerabilities in ZigBee communication protocol and the mitigation methods that has been 

researched and proven by many researchers. We have divided ZigBee vulnerabilities into two 

categories: 1) vulnerabilities by compromising the keys, and 2) vulnerabilities without 

compromising the keys. In each of these categories we go over scenarios and methods that could 

expose ZigBee to malicious attacks, and we suggest mitigation methods for each one of them. 

Despite the fact of the existence of such vulnerabilities in ZigBee, we were not able to find any 

real world attack that specifically mention that the cause was due to the ZigBee protocol. Also, 

most of the real world attacks found did not mention any specific, and known communication 
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standard that IoT uses; however, we have provided real world IoT attack scenarios that have 

occurred and are related to the same types of vulnerabilities that ZigBee suffers from. Even 

though the articles about the real world malicious attacks have undisclosed the communication 

protocols, we have correlated each one of them to the vulnerabilities in ZigBee to emphasize the 

fact that such attacks are real and their occurrence is very likely to occur in ZigBee devices and 

networks.  
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3.2  Attacks performed by compromising the keys 

3.2.1 Reuse of Initialization Vector (IV) values with the same key 

 Reusing Initialization Vector (IV) value with the same key is a security vulnerability 

inherited by ZigBee from 802.15.4. Advanced Encryption Standard Counter (AES-CTR) mode. 

Reusing nonce values such as Initialization Vector (IV) with the same key introduces 

vulnerabilities because an attacker can recover two plaintexts using their ciphertexts in the AES-

CTR mode [23]. Recovering the two plaintexts is a simple operation could be performed by an 

attacker, and that is by using XOR operation on the two ciphertexts that has been encrypted with 

the same keys and nonce values, which is similar to the attack that can be performed on WEP 

[24] [23].  For example, if for any reason the device sent two consecutives messages M1 and M2 

encrypted with the same nonce value and the same key, then by capturing the data transmitted 

and using XOR operation on C1 and C2 we will be able to recover partial information about the 

original text using the formula [25]:  

C1 ⊕ C2 = [ M1 ⊕ E (key, nonce)] ⊕ [ M2 ⊕ E (key, nonce)] = M1 ⊕ M2 

Below are 2 scenarios that allows the reuse of IV values with the same key: 

 Multiple Independent Access Control Entries 

 802.15.4 radio devices have an Access Control List (ACL) for configuring the security 

suite that should be used.  Since each chip has multiple independent ACL, the same IV could be 

reused with the same Key causing vulnerability in the network.  

 Repopulating Access Control Table 
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 Another scenario that could happen is when a ZigBee device goes to sleep (or loses 

power), the ACL entries are lost and need to be repopulated; at this time if the application layer 

regenerates the ACL table it may also regenerates the same IV values with the same keys that 

has been used before the device loses power [23] [26]. For example, in one of the researchers’ 

simulation, they implemented this attack by taking out the battery of the device every time one 

message was sent, and they used XOR operation on both the encrypted message and obtained the 

original data transmitted [25].  

 Best Practices of avoiding the reuse of IV 

 A solution for this flaw is to generate a new key after power disruption or a key counter 

should be stored in flash memory so that they are not lost and recover them after each power 

failure [25] [23]. However, keys establishment becomes an issue, every time a new key is 

generated, also maintaining the ACL entries in a sleepy mode requires power which is another 

issue, since ZigBee is designed for low power consumption. An alternative solution is to store 

the ACL entries in the upper layer, for all sleepy devices [23]. 

3.2.2 Acquiring ZigBee Keys 

 The network encryption key main functionality in ZigBee is to encode broadcast 

messages, and is shared among all devices; it suffices to compromise one node in order to 

compromise the whole network. The link key in ZigBee is used to encrypt unicast messages 

between two nodes; therefore, when a node is compromised, a hacker can obtain all the unicast 

communication of the that device. ZigBee security is based on the assumption that keys are 

stored securely, and the coordinator is preconfigured with the network key and other devices 
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such as the routers and end devices are pre-configured with the link encryption key and obtain 

the network encryption key over-air. 

Below are examples of acquiring ZigBee Keys: 

 Physical Attacks 

 ZigBee network or link key can be obtained by a physical attack. The keys can be 

extracted from ZigBee devices’ flash memory once a physical access is achieved. Also when a 

device is removed from the network, ZigBee does not invalidate the keys and generate new ones 

and that allow tempering the whole network [27]. Several researchers that gained physical access 

to the ZigBee device have extracted the firmware and found the encryption from there [28] [25].  

Millions of IoT devices use the same cryptographic secrets key; SEC have analyzed more than 

4,000 IoT devices in the market from over 70 vendors and extracted the encryption keys from the 

firmware, and have found that most of the devices use the same keys. The number of unique 

keys was 580, and out of these 230 were actively used [29].  

 Network key sent unencrypted over the air  

 In ZigBee protocol if the link key is not configured by the coordinator, then the network 

key will be sent unencrypted to the joining devices that match the PAN ID and the channel that 

the network is operating on. The PAN ID is a 64-bit value, and will take some processing time to 

find the right PAN ID, but eventually an attacker can find its value. Also, the channel numbers 

that ZigBee operates on is limited to 16 as shown in Table 2 which makes it easy to find the 

correct network channel [19].  For example, Vidgren, et al. [30] demonstrate an attack on a 
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ZigBee network that sends the network key unencrypted over air where they gain access to the 

network key by intercepting the ZigBee traffic.    

 Default Link Key values 

 Default link key values are used by manufacturers to provide interoperability for All 

ZigBee devices. For example, in a case where a user has bought a new ZigBee device to add it to 

his/ her own home automation network and that new device is not recognized or it’s unknown or 

has no specific authorization associated with it, the network will allow a default link key to fall 

back to at the startup time [8]. Therefore, an attacker can join the network by using an unknown 

type device and collect the data needed to temper the network’s functionality. SEC Consult’s 

research has also revealed that millions of IoT devices are directly accessible via the Internet, 

and that is due to insecure default configuration [29]. 

 Best Practices to prevent acquiring ZigBee Keys 

 In order to prevent the acquisition of ZigBee keys by an attacker, the keys must be 

preloaded out of band and not transmitted over the air, and ZigBee devices physical location 

should be secured at all-time. Olawumi et al. [10] suggest that the Standard Security level 

(sending the network key unencrypted over air) should be removed all together from the ZigBee 

protocol. Also default configurations of keys or a fall back default keys should not be allowed by 

the manufacturers [8]. 
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3.3  Attacks without compromising the keys 

3.3.1 Replay Attacks 

 Replay attacks mean that an attacker can sniff a packet, or record packets traffic in a 

network and sends it back at a later time to cause a malicious attack. Let’s consider for example 

that a system consisting of two devices, where the first one is attached to a motion sensor that 

sends data to the second device whenever motion is detected; in this case an attacker can capture 

the data sent by the first device and replay it at a later time causing the second device to assume 

that there was a motion detected while in fact there was not any. ZigBee implements a 

mechanism to avoid replay attacks by using a frame counter; however, Joshua Wright, has 

succeeded in implementing a replay attack and has mentioned: “802.15.4 has no replay 

protection and ZigBee has meager replay protection” and “An attacker can replay any previously 

observed traffic until key rotation” [13]. Many other researchers have also succeeded in 

implementing the replay attack using the “Killer Bee” that was made by Joshua Wright [13] [10].  

In October 2016, CERT [31] has released an article that exploited “The Animas OneTouch 

Ping”, insulin pump vulnerabilities. The “OneTouch” uses a custom communication protocol 

that does not provide sufficient protection against replay attacks. “Once the attacker spoofs the 

meter remote, he/she could initiate commands from the remote to the pump and attempt to replay 

them from a device other than the meter remote to the pump” [31]. 

 Below are 3 examples of implementing replay attack in ZigBee: 
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 ZigBee without encryption  

 Reply attack could easily happen in a ZigBee network where security is not enabled 

which leads to a ZigBee network operating without any encryption, authentication or a frame 

counter. In this case an attacker can sniff the packet using another ZigBee device connected to a 

computer and capture the packets transmitted. Since authentication and frame counter are 

disabled in the network, an attacker can replay the same packets, or even change the data 

contained in that packet and sends it using any ZigBee device causing an unaccepted behavior in 

the network.   

 ZigBee network without trust center 

 ZigBee networks that do not use a trust center are using the same key and are unprotected 

from packets replays. It’s sufficient for an attacker to get hold of a higher sequence number 

packet and at later time when the frame counter is reset it can retransmit the packet [25]. Durech 

et. al. [25] has implemented such attack using SmartRF Studio 7 where they captured the 

encrypted data that controls the lights, and at the time of the sequence number has been reset 

they have resent the packet and turned on the light.  

 

 802.15.4 Mac Layer Unauthenticated Encryption 

 Replay attack could happen on the 802.15.4 Mac layer if no authentication is enabled at 

that layer. “An attacker can send a message with the key counter and frame counter set to 

maximum, even with a payload encrypted with the wrong key. In this case the mac layer will set 

their values to max and any further packets received will be discarded causing a denial of service 

(DoS)” [9].  
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 Best Practices to avoid replay attacks 

 Replay attacks on ZigBee can be avoided by enabling security and using the trust center 

which will allow authentication, frame counter enabling and keys rotation. Olawumi et al. [10] 

suggest that ZigBee alliance should consider a time stamp that should be integrated with 

encryption mechanism, where in case of a packet obtained by an attacker and replayed, this 

packet will be rejected by the receiver because the time difference.  Cache et al. [32] suggested 

that replay attacks could be avoided by configuring the ZigBee protocol in a way that it can 

confirm that the sequence number of the newly received packet is at least one number greater 

than the sequence number of the previously received one. 

3.3.2 Denial of Service (DoS) Attacks 

 ZigBee alliance had put a good effort to achieve authenticity and confidentiality to the 

communicated packets; though, denial-of-service (DoS) is still an issue and no effort has been 

done in this area. Multiple stack layers could be affected by this type of attack and that depends 

if the attacker has joined the network (insider attack) or not (outsider attack). If the attacker has 

joined the network, the DoS may be conducted at the physical, medium access control, network, 

and application layers, but in case it’s an outsider the DoS could happen only at the physical and 

medium access control layers. Figure 8 shows the attacks at several OSI layers.  



www.manaraa.com

29 

 

 

Figure 8: Denial of Service ZigBee Attacks at the OSI layers 

 

DoS attacks are very common in the attacks related to IoT in general. Recently, in September 

20th of 2016, OHV a French firm, has claimed that it was targeted by a distributed DoS attack 

that sent data in rate of 800 Gb/s, making it the largest known DoS attack in history, to 150,000 

IP enabled internet of things devices [33].  

On Oct. 21st a massive DoS attack caused an internet outage across the united states, and it was 

due to a botnet that was built out of IoT devices. It’s confirmed that 10% of the IP-enabled 

cameras, DVRs, home networking gears and other connected devices compromised by Mirai 

were involved in that attack.  The attack kept Dyn, a domain provider company and a number of 

its high-profile customers offline throughout different period of times during the day [22].  
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 Insider Attack 

 Insiders’ attacks can happen at the Application Layer (APS) by flooding the network with 

messages. For example, an attacker can send a load of messages without any delays which 

causes the whole network to freeze. Also insider attacks can happen at the Network Layer 

(NWK), by stopping the forwarded transmission of data between devices, that can alter the 

routing protocol [9].  Once an attacker joins the network he basically has a complete control of 

almost everything in the network.  

 Outside Attack 

 Outsiders’ attacks can happen at the medium access layer; ZigBee uses CSMA/CA (if it 

is running in non-beacon mode) [9]. An attacker can send data continuously over the channel, 

which denies any other devices to communicate to each other. That scenario could easily happen 

and cause a DoS in the network since devices that use CSMA/CA communication will always 

back off if the channel is busy. At the physical layer, the denial of service attack could be 

achieved by direct jamming of the channel. Such attack can be performed by placing an outcast 

device close to the network that disrupts the signal by changing the Power Spectral Density 

(PSD) [9], [11], and [12].   

 In ZigBee protocol, the sender could optionally enable the ACK by setting a flag in the 

packet sent, the receiver then has to send a new packet containing the ACK response. 

Nonetheless, IEEE 802.15.4 does not have integrity checks on acknowledged packets, therefore 

any device can reply with an ACK packet response. For example, in a none compromised 

network a sender sends a packet to the receiver and waits for an ACK confirming that the 
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receiver has received the packet in order to continue its operation. In case an ACK was not 

received, the sender will send the packet again; however, in case of the network being 

compromised and the ACK packet is not authenticated, an attacker will intercept the packet and 

not allow it to be sent to the receiver and sends a fake ACK to the sender. Figure 9 describes that 

scenario. 

 

Figure 9 : Unauthenticated Acknowledge packet 

Unauthenticated acknowledge packets is another “OneTouch” security vulnerability that has 

been exploited. An unauthenticated remote attacker can spoof acknowledgement packets to cause 

a remote to believe an acknowledgement was received after performing a command [31]. 

 Best Practices to avoid DoS attacks 

 Insider DoS attacks can be prevented by not allowing unauthenticated devices to join the 

network as described in the section” Best Practices to prevent acquiring ZigBee Keys”, and also 

by enabling security in the network. DoS attacks can be also avoided by placing a device that 

detects external signals interference close to the ZigBee network. Cao et al. [34] suggested 
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tracking the energy depletion of the ZigBee devices, since a DoS attack will deplete the power of 

the devices much faster than normal. Another, mitigation is to maintain a list of the misbehaving 

nodes, and if the victim node observes messages with bogus security headers, it will add the 

sender node to the blacklist and inform the network.  
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Chapter 4: Attacks Simulations on ZigBee 

4.1  Overview 

 In this chapter we have conducted experiments and security attack simulations on ZigBee 

protocols to learn its vulnerabilities first hand, to demonstrate the security risks in ZigBee, and to 

use our learnings to create a more secure IoT ZigBee platform.  

 The ZigBee attacks simulated in this chapter, are based on the ZigBee security 

vulnerabilities that were explored in chapter 3. These simulations are based on a combination of 

attacks, where for example, a physical attack can lead to other various attacks such as replay and 

DoS attacks. We have simulated the physical attack by retrieving a node from the ZigBee 

network, acquiring its configuration, reading its memory, configuring an intruder ZigBee device 

with the same configuration obtained, and perform a replay attack on the network after listening 

the network traffic. We have also performed a DoS attack on ZigBee network that have granted 

our intruder node access to join the network by acquiring the unencrypted network key. In 

addition to the experience and knowledge gained about ZigBee after performing these attacks, 

our simulation had also demonstrated another ZigBee security architecture vulnerability that is 

upon removing a node from the network, the coordinator does not detect such change, and does 

not generate and send a new network key to the other nodes [8]. 

 In Chapter 5, and part of our IoT ZigBee platform we suggest and implement a solution 

for detecting the absence of a node in the ZigBee network at the application layer without 
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affecting the ZigBee protocol specifications, and we configure the ZigBee network using best 

practices and lesson learned from our attack simulations and other research papers. 
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4.2   Environment Setup 

 In all the attack scenarios we will be using the same hardware, and software to setup the 

network and establish the communication, the only difference between a scenario and another is 

the configuration of the ZigBee devices.  

 To demonstrate some of the possible attacks on ZigBee protocol we have setup a system 

that uses ZigBee communication. The system consists of a motion detector, a light that turn on or 

off upon motion detection, and a dummy device acting as the compromised node in the network. 

The ZigBee network consists of 3 nodes: a coordinator (C) and 2 routers (R). The coordinator is 

labeled with a (C) letter and connected to the light, the grey color router connected to the motion 

detector, and the green router acting as the dummy node. The bidirectional arrows, symbolizes 

the bidirectional communication among the nodes as shown in Figure 10. 

 

Figure 10: ZigBee Network Setup for Attack Simulation 
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4.2.1 Hardware  

 The hardware used in the simulation are chosen based on the ease of the setup and 

configuration. The coordinator node is formed by an Arduino Board, XBee Shield, and an XBee 

Pro S2 Module, the router node is formed by the same components as the coordinator with an 

addition to an Infrared sensor, and the dummy node is formed by an XBee module connected to 

an XBee Shield that is connected to the PC.  

4.2.1.1 XBee Pro S2  

 In our attack simulations three XBee Pro S2 are used to form the ZigBee network 

(coordinator, and 2 routers). XBee/XBee-PRO ZB RF module is made by Digi, and it consists of 

ZigBee firmware loaded into XBee S2 (series 2) [19]. Figure 11 shows the XBee Series 2 

module. 

 

Figure 11: XBee Module Series 2 

XBee S2 module is intended to function within ZigBee protocol. XBee S2 device is fully ZigBee 

compliant and can be used with any third party devices that use ZigBee protocol. XBee S1 
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(series 1), is a Digi product as well but should not be confused with XBee S2, since the later 

operates with the ZigBee firmware while the former operates with IEEE 802.15.4 protocol. XBee 

S1 and XBee S2 cannot communicate together since each uses a different protocol. The 

XBee/XBee-PRO ZB security model, network topologies, forming and joining a network is the 

same as ZigBee the protocol. 

4.2.1.2 XBee Configuration 

 To configure the XBee we used the XBee Xplorer USB and the XTCU application 

provided by Digi.  

 XBee Xplorer USB 

 XBee Explorer USB is a serial base unit for the XBee; shown in Figure 12. The XBee 

Xplorer is compatible with all XBee modules (S1, S2, and Pro versions). Once the XBee Xplorer 

is connected to the XBee, it will have a straight access to the serial and programming pins of the 

XBee module [35]. 

 

Figure 12: XBee Xplorer Board by Sparkfun 

Figure 13 shows the XBee module connected to the XBee Xplorer. The XBee Xplorer connects 

to the PC using the USB port to allow configuration of the XBee module using the XTCU 
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application.  In our attack simulation the XBee module connected to the XBee Xplorer acts as 

the dummy router (grey router) node and used as the compromised node.  

 

Figure 13: XBee Xplorer Connected to XBee module 

 

 

 

 

 XTCU  

 The XTCU free application provided by Digi allows an easy configuration for the XBee 

module, provides a graphical network view, and it is compatible with Windows and MacOS 

[36]. XBee module can be also configured using the AT command through the command 

line.  

After connecting the XBee module to the XBee Xplorer we connect the later to the PC using 

the USB port and launch the XTCU application.  

o Configuration Steps:  

Step 1:  Click on the search icon at the top left of Figure 14 to search for the 

XBee  Xplorer. 
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Figure 14: XTCU Application 

 

Step 2: Select the serial port that the XBee Xplorer is connected to and click 

“Next” (in this case it’s “COM 5”); shown in Figure 15.  

 

 

Figure 15: XTCU- Discover XBee Device 
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Step 3: Configure the serial port parameters and click “Finish”. In our case we 

left the serial port parameters in their default values as shown in Figure 16: 

 

 

Figure 16: XTCU – Configure Port Parameters 

 

Step 4: The XBee module is discovered by the XTCU application and some basic 

information of the devices are shown; such the port number that is connected to it, 

and the MAC Address, as shown in Figure 17. To select the device, Click “Add 

select devices”. 
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Figure 17: XTCU – XBee Device Discovered. 

 

Step 5: Click on the device located on the left, in Figure 18, which will display all 

the current XBee module configuration (at the right, in Figure18). The XBee 

device connected has already been configured, however the parameters could be 

reconfigured by filling the box next to each field and clicking the “pencil” icon 

next to it to save/write the configuration into the XBee module.  
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Figure 18: XTCU – XBee Device Parameters Configuration 

 

Step 6: Besides configuring the parameter of the XBee device, the XTCU 

application allow to configure the function set of that device and update its 

firmware. For example, the same XBee device could be configured to be a 

coordinator and reconfigured to be a router; to do so, click on the “Chip” icon 

shown in Figure 18 under the radio configuration, and the “Update Firmware” 

window will open allowing the selection of the function set and the firmware 

version. After selecting the “Product Family”, the “Function Set”, and the 

“Firmware” version then “Update” to save the configurations, as shown in Figure 

19.  

 



www.manaraa.com

43 

 

 

Figure 19: XTCU -  Update Firmware 

 

Step 7: Besides the configuration of the XBee module the XTCU application 

provide logging for the messages that being sent and received from and to the 

XBee module. Click on the “Monitor” at the top right of Figure 20 to see the 

communication log.  
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Figure 20: XTCU -  Communication Logs 

 

4.2.1.3 Arduino Board 

 In the attack simulation we used two Arduino boards acting as the brain of the system 

that analyses the incoming data and perform action upon its content (one for the coordinator, and 

one for the grey router shown in Figure 8). Arduino makes many types of boards; the one that we 

will be using in our simulation is the Arduino Mega 2560, based on the Atmega2560 

microcontroller. Arduino Mega has 54 digital input/output pins, 16 analog inputs, 4 UARTs 

(serial ports), and 16 MHz crystal oscillator [37], shown in Figure 21.  
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Figure 21: Arduino /mega 2560 

 

 Arduino IDE: 

Arduino provides its own IDE to write, compile and upload code into their board as 

shown in Figure 22. 
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:  

Figure 22: Arduino IDE 

 

o Programing Arduino Board: 

Step 1: Connect the Arduino board to the PC using the USB port  

Step 1: Open the Arduino IDE software  

Step 2: Select the Arduino board. Go to Tools -> Board, and select the board in 

use. In our simulation we’re using “Arduino Mega 2560” 

Step 3: Select the serial port that the Arduino board is connected to. Go to Tools -

> Serial Port 
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Step 4: Compile the code, by clicking the “Check” mark icon. 

Step5: Program the Arduino board by clicking the “Forward” icon. 

 

4.2.1.4 XBee Shield Module 

 Two XBee shield modules used for connecting the XBee Pro S2 to the Arduino boards 

used for the coordinator and the router. The XBee Shield module allows an easy connection 

between the Arduino board and the XBee module [38]. The XBee module is plugged on top of 

the shield and the shield is plugged into the Arduino Board allowing the data to flow between the 

two devices as shown in Figure 23 and 24. 

 

 

Figure 23: XBee Shield Module Made by SainSmart 
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Figure 24: XBee Module Connected to The XBee Shield 

The XBee shield has two jumpers, that specifies: “how the XBee's serial communication links to 

the serial communication between the microcontroller chip and the FTDI USB-to-serial chip on 

the Arduino board” [37]. Upon programing the Arduino board and the XBee shield is connected 

to it, these 2 blue jumpers have to be moved to the right where we see the “USB” text in Figure 

25. 

 

Figure 25: XBee Shield -  Jumpers Settings (1) 
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Once the Arduino board is programmed these 2 jumpers has to be placed to the left where the 

“XBEE” text is shown in figure 26, to allow the over air ZigBee communication between the 

XBee module and other nodes in the network. 

 

Figure 26: Jumper Settings (2) 

 

4.2.1.5 Infrared Sensor 

 One infrared proximity sensor acting as motion sensor detecting the presence of objects 

and it’s connected to the grey router (formed by the Arduino board, XBee Shield and XBee 

module). The Infrared proximity sensor is made by Sharp; shown in Figure 27. “Part # 

GP2Y0A21YK has an analog output that varies from 3.1V at 10cm to 0.4V at 80cm” [39]. The 

Infrared sensor is connected to: The Arduino analog pin 8, where the voltage data is read from 

and converted to distance, the ground (GND) pin. and the 5V pin powered by the 5V pin on the 

board.  
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Figure 27: Sharp Infrared Sensor 

 

4.2.2 Software Implementation  

 The software piece is written using the Arduino open source library and loaded into the 

Atmega2560 microcontroller residing in the Arduino board using the Arduino IDE. The code 

also includes encryption and decryption of the data that is sent over air. The encryption library, 

AESlib.h, uses AES 128 bit, it is implemented by Davy Landman [40]. 

 Sender’s code 

 The sender is the Arduino Board that is connected to the grey router and to the infrared 

sensor. The Arduino will read the collected data by the sensor through its analog pin number 8, 

then it will encrypt the data using AESlib.h library, and send it serially to the XBee module (the 

grey router in this case) which will forward it over air to the coordinator that is connected to the 

Arduino receiver and to the dummy router. The sender’s code is shown in Figure 28: 
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Sender’s Code in The Attack Simulations 

// Begin 

#include <AESLib.h> 

int IRpin = 8;                    

void setup () { Serial.begin(9600);  } 

 

void loop () { 

    float volts = analogRead (IRpin)*0.0048828125;  

    float distance = 65*pow (volts, -1.10); 

//encryption Key           

    uint8_t key [] =            

{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; 

delay (100); 

 

if (distance<=150 && distance>10) { 

   char data [] = "HHHHHHHHHHHHHHHH"; 

   

//128 bit AES data encryption  

   aes128_enc_single (key, data); 

   

//sending the data serially to the Xbee //module connected 

to the Arduino 

   Serial.println (data); 

   Delay (100);  

 

 } else { 

    char data [] = "LLLLLLLLLLLLLLLL"; 

    aes128_enc_single (key, data); 

    Serial.println (data);  

     Delay (100); 

 } //End 

 

Figure 28: Sender’s Code in The Attacks Simulations 
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 Receiver’s Code 

 The Receiver is the Arduino board that is connected to the coordinator and to the LED 

that is acting as the light. The XBee module is configured as the coordinator and will receive the 

data over air from the router (sender) and route the data serially to the Arduino board that is 

connected to it. The Arduino board in its turn will decrypt the data using the same AES library 

(AESlib.h), analyze it and turn on or off the LED light accordingly. The receiver’s code is shown 

in Figure 29: 
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Receiver’s Code in The Attack Simulations 

const int ledPin = 53; // LED Pin 

 

void setup() { 

  Serial.begin (9600); 

  pinMode (ledPin, OUTPUT); 

} 

 

void loop () {  

  String content = ""; char character;  

  char charBuf[50]; 

  uint8_t key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; 

   

  while(Serial.available()) {  

    // Read data from the Xbee Module  

   //(coordinator) 

    character = Serial.read ();  

    content.concat (character);  

    delay (10); 

  } 

   

  if (content  !=  "") {  

    Serial.print ("Encrypted= ");  

    Serial.println (content); //log the Encrypted       //data 

recieved 

    Delay (10); 

 

  content.trim ();  

  content.toCharArray (charBuf, 50) ; 

aes128_dec_single (key, charBuf); //decrypt //the data received 

Encrypted        

 

   Serial.print ("Decrypted to bytes= "); 

    Serial.println (charBuf); 

    Content = charBuf; 

    Serial.print ("Decrypted to strings= "); 

    Serial.println (content); 

    if (content == 

"HHHHHHHHHHHHHHHH") { 

      Serial.println ("On"); // log “On” 

      digitalWrite (ledPin, HIGH); //turn LED 

on 

    } 

    if (content == "LLLLLLLLLLLLLLLL"){ 

      Serial.println (“Off"); // log “Off” 

      digitalWrite (ledPin, LOW); //turn LED 

of 

    } 

    Delay (10); 

  } 

}  

// Code End 

 

Figure 29: Receiver’s Code in The Attacks Simulations 
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4.3  ZigBee Physical Attack 

 In this section we will simulate a physical attack that could happen by obtaining a ZigBee 

device such as the dummy node introduced in our simulation system and acquiring the 

configuration needed from that device by reading its memory.   

4.3.1 Network simulation configuration 

 In this section we’ll go over the coordinator security configuration only, and in the 

following section we’ll go over the rest of the configuration. The reason for explaining only the 

security configuration here and no other configurations is because some of these configuration 

parameters are “write only” values and once they’re set cannot be read using the XTCU 

software. Table 4 describes the AT Commands used to configure XBee devices [19].  
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AT 

Command 

Name and Description Node Type Parameter Range Default 

EE Encryption Enable.  

Set/Red the encryption enable setting. 

Coordinator, 

Router, End 

Device 

0 Encryption 

Disabled 

1- Encryption 

Enabled 

0 

EO Encryption Options.  

0x0 – Send the security key unsecured 

over-the-air during joins 

0x01 – User trust center (coordinator 

only) 

Coordinator, 

Router, End 

Device 

0-0xFF - 

NK Network Encryption Key.  

Write only command; if set to 0, the 

module select a random network key. 

Coordinator 128-bit value 0 

KY Link Key. 

Write Only Command. Setting KY to 0 

will cause the coordinator to transmit the 

network key in the clear to joining 

devices, and will cause joining devices to 

acquire the network key in the clear when 

joining. 

Coordinator, 

Router, End 

Device 

128-bit value 0 

 

Table 4: XBee AT Security Commands Description [19] 

 

As we see in Figure 30 we set the coordinator PAN ID to ”1234”, the mask for the channels to 

scan (SC scan channels) to “FFFF”, the “EE” parameter is set to “1” meaning that the security is 

enabled, “EO” is set to “1” so that the coordinator is used as a trust center. We have set the “KY 

Encryption Key” to “1234”, but it could be any hexadecimal value from 0-32 characters long. 
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For any device to join the network, the “KY” has to be set to the same value as the coordinator, 

and has to be pre-configured since it cannot be sent by air. However, the “NK Network 

Encryption Key” is sent over air encrypted by the link key “KY” and has to only be configured 

by the coordinator.  The network encryption key “NK” is configured to at the coordinator and set 

to 0, meaning that the coordinator will choose a random key that is 0-32 hexadecimal characters 

long [19].  

 

 

Figure 30: Coordinator Security Parameters in ZigBee 

 

4.3.2 Acquiring network configuration 

 In this section we will assume that we got hold physically of the XBee dummy device 

and connected it to our PC using the XBee Xplorer. We used the XTCU application to read the 

memory of the dummy device. Once the dummy device is detected by the XTCU application, all 
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the parameters that resides in memory are being displayed; Figure 31 shows a small number of 

parameters that we chose to be displayed and are main points of interest for an attacker. These 

parameters are the same parameters that we have configured in the coordinator and our network 

is using. The most important parameters in the networking section that are read form memory are 

the “ID PAN ID”, the “SC Scan Channels”, and the “CH”. In the addressing section we see that 

an attacker can also read the Mac address of the device that is displayed in the “SH Serial 

Number High” and the “SL Serial Number low” fields. Also the “DH Destination Address High” 

and the “DL Destination Address Low” parameters are set to “0” meaning that this device is 

broadcasting data in the network; if these parameters were set to a value other than “0” then the 

node is communicating in a unicast mode and routing data to a single device in the network. The 

security section of the configuration is the most crucial information that we were able to read 

form the device memory; we can see clearly that most the security configuration that we have set 

in the coordinator can be read by the attacker. We were able to read the “EE Encryption Enable” 

that we had set to “1”; if this parameter was set to “0”, then the configuration in the networking 

and addressing section, are sufficient for an attacker to compromise the network.  The “EO 

Encryption Options” is being read and set to “1”. The “KY Encryption key”, however, cannot be 

read by the XTCU application since it’s a “write only” value; nonetheless, other techniques have 

enabled researcher to get hold of the link key, and one of these techniques is the “KillerBee” 

application developed by Joshua Wright [13]. The link key is usually pre-configured by the 

manufacture and without the link key an attacker cannot configure a new XBee device and make 

it join the network; however, that does not stop the attacker from using the same XBee device to 

alter the network functionality. We also notice that the “NK network encryption key” does not 

exist since it’s only set at the coordinator and is sent over air. 
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Figure 31: XBee configurations of the device acquired by the attacker 

 

4.3.3 Attack Simulation 

 In the previous section we have obtained most of the configuration needed to simulate 

our attack on the network except the link key and the network key. Without the link we will not 

be able to configure the new device to join the network; however, that will not stop us or stop an 

attacker from compromising the network by using the same device acquired to listen and capture 

all the data that is being transmitted in the network and perform a replay attack.  
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4.3.3.1 Listening to network traffic 

 After acquiring the XBee dummy device and connecting it to our PC we will use the 

XTCU application to listen to the traffic in the network. Figure 32 shows a sample data of the 

messages being transmitted in the network; the following data is being transmitted from the 

XBee device that is connected to the sensor (the sender) and being sent to the coordinator (the 

receiver). As we can see in the console log, the left column contains the encrypted data “âV 

}C9¡íÚv¬wØ_·” and the right column the bytes representation of it “0A E2 56 13 7D 43 39 A1 

ED DA 76 AC 77 D8 5F B7 05 0D”.   

 

Figure 32: A data sample of the configuration being sent from the sender (router) to the receiver 

(the coordinator) 

 

 We were able to see data because the sender is broadcasting the data to all the nodes in 

the network; however, if the sender is sending the data to a specific node then we will have to 

perform a search on the network to detect the topology of the network and the nodes that are 

communicating among each other. For example, Figure 33 shows the specific details of the 

topology where the coordinator (C) and the green router are communicating in a bidirectional 
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manner while the pink router is only receiving data and not sending. The XTCU application will 

allow the discovery of the network topology only if the ZigBee network is configured to work in 

API mode and not in AT mode. In our case the XBee modules in the simulation system were 

configured to communicate in AT mode. In case the XBee modules were configured in API 

mode we will be able to detect the data being transmitted and alter the network since XTCU not 

only display the topology of the network but also the MAC addresses of the devices that are also 

the addresses of the nodes. 

 

Figure 33: ZigBee Network Setup in Physical Attack Simulation 

 

4.3.3.2 Perform replay attack 

 After capturing the data being transmitted we created a packet containing the same 

sequence of bytes that are captured and replayed it in the network; even though the data is 

encrypted and we were not able to decrypt it, replaying the packet in bytes was enough to trick 
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the coordinator and make it respond to the replayed messages. In this case two things could 

happen: the light on the receiver end will be turned off if it was on and vice versa. The new 

packet is formed by the sequence of data shown in Figure 34 “0A 76 77 BD 4C 77 F5 13 BD 5B 

1A 52 2D 23 0E ED F8 0D”. 

 

Figure 34: Packet Sample Created and Sent to The coordinator to Turn On The LED 

 

 Once the packet is formed we sent it to the network and observed that the coordinator has 

actually responded to it by turning the LED on while the LED should have been off since the 

sender in our system has not detected any motion that cause it to send the data to turn the LED 

on. After creating a packet to turn the LED on, we have created another packet that will turn the 

LED off. The packet that is being replayed to turn the LED off has the following sequence of 

data “0A E2 56 13 7D 43 39 A1 ED DA 76 AC 77 D8 5F B7 05 0D”. Once again we sent the 

fake packet over the network, and have observed the LED was turned off. Even though the LED 

had to stay on since an object was present on the sender side, we were able to hack its 
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functionality and turn it off. Luckily our system is only used for simulation and not in real world 

application; however, such attacks are very critical in real world applications and could lead to 

undesirable consequences. 

4.3.3.3 Conclusion 

 In this section we were able to compromise the network by first getting a physical hold of 

the ZigBee device, acquiring the network configuration by acquiring it’s the dummy node 

configuration, and use the device to perform a replay attack on the network and disrupt its 

functionalities. Our simulation had also highlighted another vulnerability in the ZigBee security 

architecture that upon removing a node from the ZigBee network, the coordinator does not detect 

such change, and does not generate and send a new network key to the other devices that are still 

in the network. Detecting the absence of a node in the network is crucial to prevent any stolen 

ZigBee device to be reused to re-join and compromise the network. 
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4.4  ZigBee Unencrypted Network Key Attack 

 In the previous section we have enabled security in the ZigBee network, and have set a 

link key to encrypt the network key with it. In this section, we have also enabled security in the 

network but this time we will not configure the link key, which forces the coordinator to send the 

network key (NK) unencrypted over air; using this configuration we have simulated an attack 

that could happen by sending the ZigBee NK unencrypted over the air to the nodes that need to 

join the network.  In our simulation, we also used our dummy device as an external ZigBee 

device to join and compromise the network. 

4.4.1 Network Simulation Configuration 

 In this simulation we have used the same configuration for the network/coordinator as in 

“ZigBee Physical Attack” section with the exception of not setting the link key “KY Encryption 

Key” to any value as shown in Figure 35. The network key “NK Network Encryption Key “will 

be sent encrypted over air to the devices that are interested in joining the network. 

 

Figure 35: Coordinator security configuration for simulating ZigBee unencrypted network key 

attack. 
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In this simulation, we also configured our dummy device to use the “PAN ID” to be 1234. The 

“PAN ID” is crucial for joining the network, but since it’s easy to run a program to keep 

selecting all the “PAN ID” combinations and try each one of them to see which one is the correct 

one, we have decided to configure it ahead of time and focus on the unencrypted network key 

attack simulation. In terms of selecting the channel, we have set our dummy device to scan all of 

the 16 channels that ZigBee supports. 

4.4.2 Attack Simulation 

 Unlike the physical attack simulation where we had to get hold the dummy ZigBee 

device in the network to perform our simulation, in this simulation of the unencrypted key attack 

we placed our dummy device within 400ft (the maximum range of our XBee Pro device) of the 

network location so we could be able to listen to the traffic and allow our dummy device to join 

it. After joining the network, a replay attack could be performed such as the one that was 

performed in the physical attack simulation, but in this simulation we chose to perform a DoS 

attack on the network to demonstrate a different attack behavior. 

4.4.2.1 Attacker’s Node Joining the Network 

 We connected our dummy device to our PC and launched the XTCU application that 

detected our dummy device, and around 20 seconds later our dummy device was able to detect 

our home automation ZigBee network and join it without any problem. As we see in Figure 36, 

the ZigBee device at the top of the figure is our dummy device, and the other 2 remote modules 

are our coordinator and router for our home automated simulated network. Also we were able to 

detect the coordinator’s and the router’s MAC addresses; if our dummy device was not able to 



www.manaraa.com

65 

 

join the network we would have not been able to see the two remote modules that were detected 

by our dummy device. 

 

Figure 36: Attacker’s Device Joins the ZigBee Network Setup with Unencrypted Network Key 

  

 Even though security was enabled, the ability of our dummy device to join the network 

means that the coordinator of the network was configured to send the network key unencrypted 

over air. On the other end, if we had disabled security in our dummy device it would have not 

been able to join our ZigBee secure network. 

4.4.2.2 Perform DoS Attack 

 After joining the network using our dummy ZigBee device we have performed a Denial 

of Service (DoS) attack. Unlick the replay attack that we have performed in the attack simulation 

of the previous section, in this simulation we did not need to track the packages being sent, but 

we have injected a malicious packet multiple times in the network. The DoS attack was 

performed by flooding the network with dummy messages that caused the network to freeze and 
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denying the service thereafter. The dummy packet was injected in the network every 100ms for 2 

minutes, and has caused the network to freeze for the whole period of the time that the attack has 

being performed; however, after we stopped the injection of the packet, the network went back to 

its normal behavior. Figure 37 shows the dummy packet containing the random data that has 

been created and the “Transmit Interval (ms):100”. 

 

Figure 37: ZigBee DoS Simulation Attack 

 

 We have run another simulation where we have simulated the same attack for 10 minutes with 

the same interval of packet injections (100 ms) but this time the network did not recover and 

caused the network to crash. Both simulations are very critical in real world application; even 

though in the first simulation the network was able to recover after a short period of time, the 

consequences of such attacks can be unforgivable and could cause a life threat if these attacks 

were performed on devices that monitors medical patients. 
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Chapter 5: Secure Implementation of IoT Framework using ZigBee 

protocol 

5.1  System Overview 

 This chapter discusses our own design and implementation of a secure IoT system that 

uses ZigBee protocol. This chapter goes over our own implementation of a secure IoT 

framework that uses ZigBee protocol. The security of our systems mainly relies on: configuring 

ZigBee devices in a secure manner using best practices learned from our attack simulations and 

other research papers and not using the default configuration; predicting potential malicious 

attack, by detecting the absence of node (device) that ZigBee protocol lacks and respond 

accordingly; adding another encryption layer to the data transmitted between the coordinator and 

the rest of the nodes (end devices or routers) that makes harder for an attacker to decrypt the data 

communicated; educating consumers about privacy and data security by giving them the 

autonomy to track in real time any motion activities detected around their house, and setup the 

time period that they should be notified in case of an attack or unexpected behavior. 

Figure 38 shows our system’s architectural components diagram that consists of: 
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Figure 38: System’s Component Diagram 

 

 A Router (sender):  

 Is formed by an Arduino mega 2560 board that is connected to an infrared sensor, and to 

an XBee Pro S2 through an XBee module and configured as a ZigBee router using XTCU 

software (refer to section 4.2.1 Hardware for further features information). Once the infrared 

sensor detects a motion the Arduino board will process the data and send it serially to the XBee 

Pro S2 device which sends it over air to the receiver.  

Figure 39 shows from left to right respectively the infrared sensor, the Arduino board, the XBee 

module, and the XB Pro S2. Figure 40 show the router assembled together. 
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Figure 39: Router Parts and Connections 
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Figure 40: Router Assembled 

 A Coordinator (receiver):  

 Is formed by Arduino mega 2560 board that is connected to an Ethernet shield and an 

XBee Pro S2 configured as a ZigBee coordinator. Once the XBee Pro S2 receives the data over 

air from the XBee router of the sender, it will send the data serially to the Arduino board which 

will process the data and notify the server through the Ethernet shield. The Ethernet shield 

functionality is to connect our coordinator to the internet which allows the coordinator to notify 

our server of any motion or suspicious attack through the REST API calls (refer to section 5.2.1 

REST APIs).  

Figure 41 and 42 are pictures of the coordinator taking from different angles; going from bottom 

to top, the 1st layer is the Arduino board connected to the 2nd layer the Ethernet shield which is 
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connected to the 3rd layer the XBee module that connects to the last layer the XBee Pro device. 

Also, as you see in Figure 40 the Ethernet shield is connected to an Ethernet cable that is plugged 

into our internet router.  

 

Figure 41: Coordinator Back View 
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Figure 42: Coordinator Side View 

 Server: 

 Implements the REST API methods to allow its communication among the web 

application and the coordinator. In addition, the server saves the data and retrieves it to from the 

mongoDB, and sends an email notification to the user upon suspicious activities such as 

removing a node from the network, tempering the normal flow of the system, and detecting 

motion activities in period of time that is not allowed by the user.  

 Web Application: 

  Allows the user to track motion detection in real time, turn on/off notification, and set a 

period of time in which the system should sends him/her the notification. The time and date of 
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the motion detected is displayed by the web application and it is saved in the mongoDB to allow 

future features development related to data analytics. 
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5.2  Server 

 Our server is implemented using node.js; “Node.js® is a JavaScript runtime built on 

Chrome's V8 JavaScript engine. Node.js uses an event-driven, non-blocking I/O model that 

makes it lightweight and efficient” [41]. Our node.js is installed using the node.js installer 

https://nodejs.org/en/, that also installs Node Package Manager (Npm). “Npm is the default 

package manager for the JavaScript runtime environment Node.js” [42]. Npm helps developers 

to find, share, and reuse packages(modules) of code that are located in the following online 

repository https://www.npmjs.com/ [42]. Our server is compromised of the following Npm 

modules: Express.js is used as a web application framework; socket.io to enable real-time 

bidirectional event-based communication between server and client [43]; mongoose for 

querying, casting, writing business logic, and modeling mongoDB data; nodemailer for sending 

email notifications.  For storing data, we have used mongoDB, a NoSql database that is built on 

an architecture of collections and documents [44] for its compatibility and ease of use with 

node.js. In addition to the Npm modules and the mongoDB, our server implements three 

Representational State Transfer Application Programming Interfaces (REST APIs) methods. 

These REST APIs will allow our XBee device (the coordinator) to save data into our mongoDB 

so it could be retrieved in real time by our client app. In our implementation we did not focus at 

the moment on securing or encrypting the REST APIs since most of the IoT systems 

implemented does that, and we will be adding security to the APIs in our future work. 
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5.2.1 REST APIs 

5.2.1.1 Save Sensor state 

 Save the light status. Table 5 shows the Request API, and Table 6 shows its Response. 

sensor-state: is set to “L” (low) if no motion is detected, or to “H” (high) if motion is detected. 

Method URL Parameter Value 

POST  apis/dataApi/ [sensor-state] String 

 

Table 5: Server Rest API – Save Sensor State Request Method 

 

Status Response 

200 {  

    “success”: “true”  

} 

401 {  

    “error”: “Invalid data” 

} 

 

Table 6: Server Rest API – Save Sensor State Response Method 
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5.2.1.2 Get most recent light state and its date and time  

 Get the latest light state and the date and time of its occurrence. Table 7 shows the 

Request API method, and Table 8 its Response. 

Method URL Parameter Value 

GET apis/dataApi/ - - 

 

Table 7: Server Rest API – Get most recent light state and its date and time Request Method 

 

 

Status Response 

200 { 

   “data”: [  

       {“status”: “on”,  

         “dateRecieved”: “Mon Nov 02 2015” 

   ] 

} 

500 { 

   “error”: “latest light state could not be retrieved” 

} 

 

Table 8:  Server Rest API – Get most recent light state and its date and time Response 
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5.2.1.3 Email Notification 

 Notify user by email upon motion detection, or upon a possible malicious network attack.Table 

9 shows the Request API method, and Table 10 shows its Response. 

user-id: the unique id of each user using the system. s its Response. 

Method URL Parameter Value 

POST  Notify/ [user-id] String 

 

Table 9: Server Rest API – Email Notification Request Method 

 

Status Response 

200 { 

   “success”: “true” 

} 

500 { 

   “error”: “notification could not be sent” 

} 

 

Table 10: Server Rest API – Email Notification Response 
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5.3  Web Application 

 Our web application provides the user with the ability to monitor the light, and the 

motion detector status at any time and from anywhere. Also, it will allow the user to disable or 

enable notifications that are sent upon detection of any suspicious activities such as an object 

presence during unexpected times, or a potential system hack. Figure 43 shows a snap shot of our 

web app user interface (UI), where the notification can be turned on or off, the time interval of 

when the notification should be fired, the current status of the light (“ON” or “OFF”, depending 

if motion is detected or not) and a chart (graph) that will display the status of the light and the 

date and time of any recorded activity. 

 

Figure 43: Web Application UI 
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5.3.1 AngularJS and the Mode-View-Controller Structure 

 Our web application is built using the open source AngularJS framework. “AngularJS is a 

very powerful JavaScript Framework. It is used in Single Page Application (SPA) projects. It 

extends HTML DOM with additional attributes and makes it more responsive to user actions” 

[45].  

The best practice to structure the code in an AngularJS app is to use the Model-View-Controller 

(MVC) design pattern to decouple the code structure and to separate concerns. AngularJS, 

however, does not implement the MVC in a traditional sense, but rather, it uses something closer 

to MVVM (Model-View-ViewModel) pattern; AngularJS team refers to it humorously as Model 

View Whatever. Nonetheless, AngularJS is still considered as an MVC based framework. The 

MVC framework is based on three parts as shown in Figure 44: 

 Model:  

 The model is responsible for maintaining application data. It receives requests from the 

view and the controller to update itself. 

 View:  

 The view is responsible for displaying the data upon a trigger by the controller.    

 Controller:  

 The controller is responsible for the application logic and controlling the interaction 

between the Model and the View.  The controller receives requests from the user and responds 

by performing business operations that could modify the state of the data model and the view.
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Figure 44: Model View Controller 

 

AngularJS core features allow developers to implement the MVC architecture and single 

application concept in a very simple and clean way. Some of the main features of AngularJS that 

allows such implementation are: 

 Data-biding:  

 Allows automatic synchronization of data between model and view. 

 Scope:  

 Are the objects that refer to the model in the MVC architecture.    

 Controllers:  

 Are the controllers that refer to the MVC architecture and are bound to the view and the 

scope (model). 

 Templates:  
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 Are the rendered views (in MVC) and displays the information from the scope (model) 

and the controller. The templates could be a single file e.g. index.html, or multiples view in on 

page and are called partials. 

 Directives:  

 Are used to create custom HTML tags, attributes, css and more.  

• Routing:  

 Is used to switch views in single application concept. 

• Services:  

 Are singleton objects and many of them come built-in with AngularJS. For example, 

$http service that creates XMLHttpRequests.    

5.3.2 Implementation/Design  

Our web application design is based on the architecture of AngluarJS framework that uses the 

Model-View-Controller pattern. Our app consists of the following components: 

A “Main-View” (called Main-Template in AngularJS terminology), a “Main-Controller”, a 

“Model”, a “SensorStatus-Controller”, and a “SenssorStatus-View” (called Partial-Template in 

AngularJS terminology). The responsibilities of each component are: 

• Main-View:   

 Is responsible for displaying the data from the Main-Controller and the “Model”.  
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• Main-Controller:  

 Is responsible for some the application logic and controlling the interaction between the 

Model, the Main-View, and the Sensor-Status-Controller (Partial-Controller).   

• Model:  

 Is responsible for maintaining the application data and it is instantiated within the Main-

Controller. In AngularJS the Model is referred to “Scope”. For example, to save the sensor data 

in an AngularJS application, a developer will use the following statement in the controller 

“$scope.sensorData = “ON”“.  

• SensorStatus-Controller:  

 Is responsible for the rest of the application logic that is not handled by the Main-

Controller, and the interaction between the Main-Controller, the SensorStatus-View (Partial-

Template), and the Model. 

• SensorStatus-View:  

 Is responsible for displaying the data from the SensorStatus Controller.   

In the sub-sections below we will discuss our web app flows, and the interactions among the 

app’s components using sequence diagrams.  

5.3.2.1 Update Sensor Status and Notification Flow: 

 The sequence diagram in Figure 45 goes over the flow of updating the light status (“ON” 

meaning motion detected, and “OFF” no motion detected) and notifying the user by email in case 
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of motion is detected.  Upon changes of light status, the SensorStatus-Controller will receive a 

notification from the server using the socket.io method “io.socker.emit(sensorStatus)” [23], then 

the SensorStatus-Controller will call the Main-Controller “upDateModel()” method in order to 

update the model with the new the sensor data. Once, the sensor data has been updated, the 

Main-View will receive a notification and update its view, by displaying the current status of the 

light as “ON” or “OFF”. Also the SensorSatus-Controller will notify its own partial 

view/template (SensorStatus-View) to update its chart to display the status of the light, and the 

date and time of the occurrence. Lastly, the SensorStatus-Controller, will check if the notification 

is turned on by the user, by calling the “checkNotification()” method of the Main-Controller 

which checks the Model data.  If the notification is off, the flow ends and no notification is sent 

to the user; otherwise, the SensorStatus-Controller will call “sendEmailNotifcation(user-id)“ 

method in the App-Service that will make a REST call  “$http.post(url/notify/user-id)” to the 

server which will send an email to user. 
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Figure 45: Update Sensor Status & Notification Flow - Sequence Diagram 

 

5.3.2.2 Enable Notification Flow 

 The sequence diagram in Figure 46 goes over the flow of enabling the notification by the 

user. 
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Figure 46: Enable Notification - Sequence Diagram 

 

The user will enable the notification by switching the notification button in the Main-View to 

“ON”. The Main-View will set the notification variable “scope.parenobj.notification=ON” in the  

Model (scope) which will trigger the Main-Controller to enable the timer dialog in the Main-

View by calling “enableDatePicker()” and allowing the user to set the time interval of when he 

should be notified by setting the start and the end time period.  Once the timer dialog is enabled, 

the user will be able to set the time interval and the Main-View will update the Model by setting 

the start and the end time variables “scope.parentobj.startTime” and “scope.parentobj.endTime”. 
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The user will be notified by email every day in the interval of time specified in case of any 

motion detected, or in case of a potential attack on the system.  
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5.4  IoT System Secure ZigBee Configuration 

 We have designed our IoT system to use the best practices of securing a ZigBee network. 

Securing our ZigBee network heavily depends on configuring our devices in a secure manner. 

The following steps describes the configuration used in our ZigBee network to prevent any 

security breaches that could make our network vulnerable to the attacks described in Chapter 4: 

Attacks Simulations on ZigBee, and to prevent any unidentified ones.  

 Prevent the acquisition of ZigBee keys by an attacker 

 In order to prevent such attack, we have preloaded the link key and the network key at the 

time of the configuration of our ZigBee coordinator and router. Figure 47 shows the 

configuration of the coordinator where we have enabled security by enabling encryption (EE 

parameter), we have used the coordinator as trust center by setting the “EO” parameter to ‘1’ to 

not allow the network security key to be sent unencrypted over air, we have 

configured/preloaded the linked key (KY parameter) to be “987654321”, and the network 

encryption key (NK parameter) to be “09EFA2A”. In this case the network key(NK) will be sent 

encrypted by the linked key to the router willing to join the network. 

 

Figure 47: Coordinator Security Configuration 
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Besides the coordinator’s configuration, we also configured the router with the same EE, 

EO, and KY parameters as the coordinator. Figure 48 shows the configuration of the router, and 

as you noticed that the router does not have a network key (NK) configured since it will be sent 

encrypted by the coordinator with the link key (KY)  

By setting the configuration keys, we have also prevented the default key configuration 

that these devices are pre-loaded with. 

 

Figure 48: Router Security Configuration 

 

 Prevent Physical attack: 

 To prevent any potential physical attack, and besides placing our router in a safe place, 

we have implemented a “heart beat” between the coordinator and the router that will notify the 

user in case the coordinator does not receive any signal from the router for a time-lapse of 2 

seconds. The” heart beat” implementation is added to cover the lack of detection of missing 

nodes in the network by the ZigBee protocol. 
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In addition to these configuration, we have also set the PAN ID of the network in the coordinator 

and the router, and have specified the channel mask that the network should operate on. 
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5.5  Network Functionality and Implementation 

 Our attacks simulations on a ZigBee network have shown that securing the ZigBee 

network by only securing devices configurations is not sufficient.  For example, removing a node 

from the ZigBee network is not detected by the network and specifically by the coordinator, and 

does not generate and send a new network key to the other devices that are still in network, thus 

allowing the attacker to compromise the ZigBee network in various ways (refer to Chapter 3 and 

Chapter 4). Detecting the absence of a node in the network is crucial to prevent any stolen 

ZigBee device to be reused thus to re-join and compromise the network. To solve this problem, 

we have implemented a “heart beat” between the coordinator and the router. The “heart beat” is 

an encrypted message sent by the sender repeatedly every 200ms to indicate its presence to the 

receiver; in case the receiver does not receive any message in the period of 2 seconds it will 

notify the user. Implementing the “hear beat” will not only warn the user about a possible 

malfunctioning of the sender but also about its nonexistence in the network and will prevent any 

possible future network attacks. 

 In addition to the “heart beat” implementation, and the secure configuration of the 

ZigBee devices, we have also encrypted all the data that being transmitted at the application 

layers. For example, the sensor state data and the “heart beat” data are also encrypted by the 

sender and decrypted by the receiver using the AESLib.h library. The AESLib.h library uses 128 

bit or 256-bit encryption key. The encryption at the application layer and the encryption at the 

network layer adds more security to our system, thus reducing the chances and the ability of an 

attacker to decrypt the data. 
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Figure 49, and 50 shows different snapshots of our IoT framework in real time. Our web 

application on left, and on the right the messages received by the coordinator from the router in 

real time. The coordinator receives encrypted messages from the router and decrypts them to get 

the data such as “High”, “LoW”, or “Beat”. The encrypted data and their decryption are made 

available by connecting the coordinator serially to the PC and opening the serial port console 

window from the Arduino IDE that was also used to program the Arduino boards (coordinator 

and router).  

Figure 49 shows on the left the initial state of the web application where we don’t see any 

activity in the timeline, and on the right the signal of the “Beat” received by the coordinator 

signaling the presence of the router only; meaning no motion detection, and no suspicious 

unexpected behavior.  
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Figure 49: IoT System Real Time Snapshot – No Motion Detected 

Figure 50 shows the detection of motion, where the web application is updated in real time and 

showing that the light is on, and on the right the signal “H” received by the coordinator signaling 

the presence of an object. 
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Figure 50:  IoT System Real Time Snapshot – Motion Detected 

 

5.5.1 Network Functionality Use Cases 

 The following section goes over our system’s secure implementation and use cases 

scenarios presented in the form of sequence diagrams. (Refer to section 4.2.1 REST APIs, for 

further details related to the REST calls).  

5.5.1.1 Notify User in Case of Invalid “Heart Beat” Signal 

 To confirm its presences in the network, the sender will send an encrypted “heart beat” 

signal to the receiver every 200 ms. The receiver in its turn will decrypt the “heart beat” message 

and validates it; if the “heart beat” message is valid the flow ends without any actions, otherwise 
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the receiver will make an “HttpRequest” (REST API call) to the server that will notify the user 

by email about a suspicious attack, as shown in Figure 51. 

 

Figure 51: Notify User in Case of Invalid Heart Beat Message – Sequence Diagram 
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5.5.1.2 Notify User in Case of Invalid “Heart Beat” Signal 

 Another scenario where the user will get notified by our system, is when the sender 

becomes unavailable. In case the receiver does not receive any “heart beat” signal from the 

sender within 2 seconds the receiver will make an “HttpRequest” (REST API call) to the server 

that will notify the user by email, as shown in Figure 52. 

 

Figure 52: Notify User in Case of Invalid Heart Beat Message – Sequence Diagram 
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5.5.1.3 Notify User in Case of Invalid Sensor Data, and Update the Client in Case of 

Valid Ones 

 Upon receiving a new data from the motion sensor, the sender will read the sensor state, 

then compare it to the previous most recent one; if the new state is equal to the previous state, the 

flow ends, otherwise the sender encrypts the new state and send it to the receiver. The receiver 

upon receiving the new sensor state decrypts it and then validates it; if the state is valid, the 

receive will call the server’s REST API “apis/dataApi/sensor-state” using an “HttpRequest” and 

the server in its turn notifies the app to update its states; if the state is invalid the receiver will 

call the server’s REST API “notify/user-id” using an “HttpRequest and the server will notify the 

user about a suspicious activity or potential attack, as shown in Figure 53. 
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Figure 53: Notify the User in Case of Invalid Sensor Data, and Update the Client App in Case of 

Valid ones – Sequence Diagram 

 

5.5.2 Router’s Implementation/ Source Code 

 Figure 54 shows the router’s source code where the router (Arduino board) is connected 

to the Infra-Red (IR) sensor using digital pin 8, and the state of the sensor is initialized as “L” 

(low). The router will read the sensor state every 0.5 seconds, then converts the voltage reading 
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to an actual distance that indicates the presence or the absence of an object. The router, will send 

an encrypted “heart beat” signal to the coordinator every 0.2 seconds indicating its presence. 

Every time a new sensor data is collected, the router will compare it to the previous sensor data 

(state), and if the 2 states are not equal it will encrypt the new sensor state and send it to the 

coordinator indicating the change. 

 The “setup ()” sets up the serial communication between the Arduino board and the 

XBee. 

 The “loop ()” method encrypts the “heart beat” signal and the sensor state, and sends it to 

the XBee which sends it over air to the coordinator. 
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Router’s Source Code 

#include <AESLib.h> 

int sensorPin = 8;// Infra-Red (IR) sensor connected to digital pin 8                            

String state ="L"; 

 

void setup() { 

  Serial.begin(9600);                            

} 

 

void loop() { 

  float voltage = analogRead(sensorPin)*0.005;    

  float distance = 65*pow (voltage, -1.10); //convert the IR sensor voltage to        

distance                             

   

  uint8_t key [] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; //encryption key 

  delay (100); //100ms delay                                  

  char data [] = "beat567890123456"; // heart beat data signal 

  aes128_enc_single (key, data); // encrypt the data to be sent 

  Serial.println (data); // send data serially to Xbee 

  Delay (200); 

  

  if (distance<=150 && distance>10) {// check if motion detection 

    if (state=="L") {// if previous state is low  

      char data [] = "HHHHHHHHHHHHHHHH"; 

      aes128_enc_single (key, data); //encrypt "high" state data  

      state="H"; 

      Serial.println(data); // send "high" state to coordinator 

      Delay (200);  

    } 

  } else {// if no motion is detected 

    if (state=="H") {// if previous state is high  

      char data [] = "LLLLLLLLLLLLLLLL"; 

      aes128_enc_single (key, data); //encrypt "low" state data 

      state="L"; 

      Serial.println (data); //send "low" state to coordinator 

      Delay (200); 

    } 

  } 

} 

 

Figure 54: Framework Router’s Source Code 
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5.5.3 Coordinator’s Implementation/ Source Code 

 Figure 55 shows the coordinator’s source code where the coordinator (Arduino board) is 

connected to an Ethernet shield which is connected to the user’s router to allow the coordinator 

to send data to the web application server. The coordinator will configure the Ethernet shield by 

setting its MAC, and IP address.  The coordinator is also connected to an LED acting as the light 

that turns on and off depending on the data send from the router (motion detected or not). Upon 

receiving any data from the router the coordinator will first decrypt it using the same key set in 

the router, validates it, and execute its action accordingly.   

 The “setup ()” sets up the serial communication between the Arduino board and the 

Xbee, configures the Ethernet shield, sets up the time interval “t.setInterval (setTime, getData)” 

for when to call the web application server APIs, and  configures the digital pin that is connected 

to the LED. 

 The “loop ()” reads the data received from the router, decrypts it, validates it, keeps track 

of the last time it has received the “heart beat” signal, and calls the “t.run()” that sends the data 

received to the web server application.  

 The “restConnect (IPAddress getServerAdd)” method calls the web application server 

API’s, for example: “notify/[user-id]” to notify the user about a suspicious activity, or 

“/apis/dataApi/[sensor-state]" to send the current sensor state. 
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Coordinator’s Source Code 

#include <Ethernet.h> 

#include <SimpleTimer.h> 

#include <AESLib.h> 

#include <SPI.h> 

 

int ledPin = 53;  

byte MAC[] = {0xFE, 0xAB, 0xAA, 0xBB, 0xCC, 0xFD}; 

IPAddress IP(192,168,1,101); 

IPAddress server(192,168,1,102); 

 

EthernetClient getClient; 

int setTime; 

SimpleTimer timer; 

String dataSend = ""; 

 

long currentMillis = 0;  

long previousMillis; 

long interval = 2000; 

long result; 

 

void setup() { 

  Serial.begin(9600); 

  while(!Serial) { ; }  

  if (Ethernet.begin(mac) == 0) { 

    Ethernet.begin(MAC,IP); 

  } 

  

  delay(2000); 

  setTime = 500; 

  timer.setInterval(setTime, getData); 

  pinMode(ledPin, OUTPUT); 

  digitalWrite(ledPin, LOW); 

} //end of setup() 

 

void loop() { 

  uint8_t key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; 

  String content = "" ; char character; char charBuf[50]; 

  previousMillis = millis(); 

  result = previousMillis - currentMillis; 

  Serial.print("result = "); 

  Serial.println(result); 

 

  while(Serial.available()) { 

    character = Serial.read();      

    content.concat(character);  

    delay (10); 
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    if (content.length() == 16) { 

      Serial.print("Encrypted = "); 

      Serial.println(content); 

      dataSend= content; 

      delay(10); 

   

      dataSend.toCharArray(charBuf, 50); 

      aes128_dec_single(key, charBuf); 

   

      Serial.print("Decrypted to bytes= "); 

   Serial.println(charBuf); 

   

   dataSend = charBuf; 

   Serial.print("Decrypted to strings= "); 

   Serial.println(dataSend); 

   

   if (dataSend == "HHHHHHHHHHHHHHHH") { 

        Serial.println("High"); 

        digitalWrite(ledPin, HIGH); 

   } 

  

   if (dataSend == "LLLLLLLLLLLLLLLL") { 

        Serial.println("LOW"); 

        digitalWrite(ledPin, LOW); 

   } 

  

   if (dataSend == "beat567890123456") { 

        currentMillis = millis(); 

        Serial.println("beat567890123456");   

      } else { dataSend = invalid; } 

 

   delay(10); 

    } 

  } 

  t.run(); 

} // end of loop() 

 

void restConnect (IPAddress getServerAdd) 

{  

  if ((result > interval && dataSend == "beat567890123456") || dataSend == 

invalid) { 

    Serial.println('in'); 

    if (getClient.connect(getServerAdd, 8080)) { 

      getClient.println("POST /notify/112 HTTP/1.1"); 

      dataSend=""; 

      getClient.stop(); 

    } else { Serial.println("failed to connect"); } 
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  } else { 

    if (dataSend == "HHHHHHHHHHHHHHHH" || dataSend== "LLLLLLLLLLLLLLLL") { 

      if (getClient.connect(getServerAdd, 8080)) { 

        getClient.println("GET /apis/dataApi/" + dataSend +" HTTP/1.1"); 

        dataSend=""; 

        getClient.println("HOST: 192.168.1.102"); 

        getClient.stop(); 

      } else { Serial.println("failed to connect"); } 

    }  

  } 

}// end of restConnect() 

 

void getData() { 

  if (getClient.available()) { 

    char c = getClient.read(); 

    Serial.print(c); 

  }  

  restConnect(server); 

} //end of getData() 

 

Figure 55: Framework Coordinator’s Source Code 
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Chapter 6: Conclusion and Future Work  

6.1  Conclusion 

 The importance of security in IoT and the domination of ZigBee protocol in home 

automation were the leading factors in writing this thesis. In this thesis we have surveyed ZigBee 

vulnerabilities, and shared some recent IoT real world attacks that ZigBee could also be a victim 

of. We have also performed first hand attacks simulations experiments of some of the most 

common attacks That have enabled us to design and implement an IoT framework that would 

prevent them. The IoT framework developed is not unique in its functionality, but its importance 

is in solving and suggesting security measures that should be implemented by any company that 

manufacture IoT products in general and that uses ZigBee protocol.  

 The developed IoT system based on the ZigBee protocol implements multiple layers of 

defense, secures all the layers and components of the ZigBee network, and predicts potential 

malicious attacks. The system would solve the problem of failing to detect a missing node in the 

ZigBee protocol by keeping a communication signal between any pair of communicating nodes 

in the network. Also, the framework developed adds another security layer between ZigBee 

communicating nodes, where we have encrypted the messages transmitted with an AES 128-bit 

encryption library. The framework implements a secure ZigBee device configuration, and 

negates the use of the manufacturers default configuration. In addition, we have highlighted the 

importance of educating users about security by giving them the autonomy to track in real time 

any motion activities detected around their house, and to setup the time period that they should 

be notified in, in the event of any suspicious activity.  



www.manaraa.com

105 

 

6.2  Future Work 

 The work that have been done in this thesis solves many problems related to ZigBee and 

to IoT security vulnerabilities, however, more work and implementation is still needed to obtain 

an ideal secure IoT framework. Our future work, and as of the continuation of better securing 

IoT systems will revolve around: 

1- Securing and encrypting the Rest Apis used in communication between the coordinator, 

the server and the web application.  

2- Being prepared for an attack [17] [18] 46] by setting up an incident response process, and 

system recovery.  

3- Considering data minimization by not collecting more data then needed.  

4- Developing a mobile app that send notification to the user in case of potential attacks, or 

activity detection.  

5- Securing the Interoperability of IoT systems and devices.  
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